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The point-plane distance by two different routes 
 

Introduction 

 

Recently I was seeking a question to place on a final examination to test 

my students’ mastery of a technique of optimization in the presence of 

constraints (Lagrange multipliers).   I decided on the following question: 

 

“Find the minimum value of         
2 2 2

, , 3 4 1f x y z x y z       

subject to the constraint   , , 2 2 3g x y z x y z     and find the location 

 , ,x y z  where this minimum value occurs.” 

 

This question finds the square of the distance between the point 

 3, 4, 1P   and the plane  2 2 3x y z    and finds the closest point on the 

plane to P.   It then reminded me of the very different method used in a 

previous course on linear algebra to solve similar questions, using the 

geometry of vectors.    

 

That led me to tackle the general problem of the distance between any 

point P and any plane, together with the location of the point Q on the plane 

closest to the point P, by each of the distinct methods of vector geometry and 

calculus.   

 

Method using vectors 

 

A normal vector to the plane : 0Ax By Cz D       is   

A

B

C

 
 


 
  

n ,   whose magnitude is  
2 2 2n A B C   n  

Let  , ,Q a b c  be the point on the plane closest to  0 0 0, ,P x y z  and let 

 , ,R x y z  be a general point on the plane. 

 

If P is on the plane, then the problem is trivial:  the points Q and P are 

the same point and the distance from P to the plane is zero.  
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Otherwise, there are four possible distinct configurations:  

 

 

 

 

 

 

 

 

        

 

 

 

 

  Figure 1        Figure 2 

 

  Figure 3        Figure 4 

 

 

                                               

 

 

 

       

 

 

 

 

 

 

 

 

 

 

In all four configurations, Ax By Cz D   r n  

In figures 1 and 3, ON is the projection of OR  r   in the direction of ,n   

so that ˆ
D

ON
n n

   
r n

r n    
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and the projection of 
0OP  r  in the direction of n  is  

0 0 0 0
0

ˆ
Ax By Cz

OS
n n

 
  

r n
r n  

In figures 2 and 4, the normal vector  n  is pointing towards the origin 

relative to the plane and  

ˆ
D

ON
n n


    

r n
r n   and  0 0 0Ax By Cz

OS
n

 
    

In figures 1 and 2, d PQ SN ON OS     

In figures 3 and 4, d QP NS OS ON     

The results for d in these four scenarios are: 

Figure 1:  0 0 0Ax By CzD
d

n n

 
    

Figure 2:  0 0 0Ax By CzD
d

n n

  
    

 
 

Figure 3:  0 0 0Ax By Cz D
d

n n

   
   

 
 

Figure 4:  0 0 0Ax By Cz D
d

n n

 
    

In all four cases, this becomes 
0 0 0Ax By Cz D

d
n

  
   

0 0 0

2 2 2

Ax By Cz D
d

A B C

  


 
 

 

0
ˆOQ OP PQ d   r n , with the sign depending on the orientation 

of the normal vector and on whether the point P and the origin O are on the 

same side of the plane. 

 

0 0 0 0 0 0

2 2 22 2 2
ˆ

A
Ax By Cz D Ax By Cz D

d B
n A B CA B C

C

 
       

  
   
  

n
n  

0 0 0 0Ax By Cz D      if either  

n  is pointing towards the origin relative to the plane and O, P are on the 

same side of the plane (figure 2); 
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or 

n  is pointing away from the origin relative to the plane and O, P are on 

opposite sides of the plane (figure 3). 

Otherwise 0 0 0 0Ax By Cz D      (figures 1 and 4) 

 

In all four situations,  

0 0 0 0 0 0

2 2 22 2 2

A
Ax By Cz D Ax By Cz D

PQ B
n A B CA B C

C

 
       

    
   
  

n
 

A unique result for the location of the point Q follows: 

 

o

o o o
o 2 2 2

o

a x A
Ax By Cz D

OQ b y B
A B C

c z C

     
        

           
          

 

 

 

Method using Lagrange multipliers 

 

We are seeking the minimum value of  

       
2 2 2

o o o, ,f x y z x x y y z z         

subject to the constraint   , , 0g x y z Ax By Cz D       

 

Functions f and g are both polynomial functions of x, y and z and are 

therefore infinitely differentiable on all of 2 .   There are no boundary 

points to check.   Obviously f can be made arbitrarily large by taking values 

of x, y and z that are large (in magnitude) such that g = 0.   A unique 

extremum must therefore be an absolute minimum. 

At any extremum  

 

 

 

o

o

o

2

2

2

x x A

f g y y B

z z C

 

   
   

      
      

    

Together with the constraint g = 0, this generates the system of 

simultaneous equations 
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   

   

   

 

o

o

o

2

2

2

0

x x A

y y B

z z C

Ax By Cz D







 

 

 

   

1

2

3

4

 

 

Provided 0A  , substitute (1) in each of (2) and (3):  

  

       o o o o

B B
y y x x y y x x

A A
       5   

and 

       o o o o

C C
z z x x z z x x

A A
       6   

 

Substitute (5) and (6) in (4):  

 

   o o o o 0
B C

Ax B y x x C z x x D
A A

   
          

   
  

2 2 2 2

o o o

B C B C
A x D By Cz x

A A A A

   
           

   
  

   2 2 2 2 2

o o oA B C x AD ABy ACz B C x           

 2 2 2 2

o o o

2 2 2

AD ABy ACz A B C A x
x

A B C

      
 

 
  

o o o
o 2 2 2

Ax By Cz D
x x A

A B C

   
    

  
  

    o o o
o o o 2 2 2

Ax By Cz DB B
y y x x y A

A A A B C

     
        

   
5   

o o o
o 2 2 2

Ax By Cz D
y y B

A B C

   
    

  
  

    o o o
o o o 2 2 2

Ax By Cz DC C
z z x x z A

A A A B C

     
        

   
6   

o o o
o 2 2 2

Ax By Cz D
z z C

A B C

   
    

  
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Therefore the only critical point is at 

 

o

o o o
o 2 2 2

o

x x A
Ax By Cz D

y y B
A B C

z z C

     
        

          
          

 

which is the nearest point on the plane 0Ax By Cz D     to the point 

 o o o, ,P x y z . 

 

If A = 0, then one can modify this method to arrive at the same result, or 

one can argue from the symmetry in this expression that it is true even if any 

one or two of A, B, C are zero. 

 

The minimum value of  f  is   

       
2 2 2

o o o, ,f x y z x x y y z z       

 
2

2 2 2o o o

2 2 2

Ax By Cz D
A B C

A B C

     
      

   
 

 
2

o o o2

min 2 2 2

Ax By Cz D
f d

A B C

  
  

 
 

 

o o o

2 2 2

Ax By Cz D
d

A B C

  


 
 

  

 

Method by unconstrained optimization 

 

Functions f and g are both polynomial functions of x and y and are 

therefore infinitely differentiable on all of 2 .   There are no boundary 

points to check.    

 

Substitute  , , 0g x y z Ax By Cz D      into  

       
2 2 2

o o o, ,f x y z x x y y z z      :  

 Ax By D
z

C

  
    (provided 0C  ) 
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The function to be minimised is now 

     
 

2

2 2

o o o,
Ax By D

f x y x x y y z
C

   
      

 
 

Critical points of  ,f x y  occur only where f  0  

 
   

 
   

o o

o o

0 0
2 0 2 0

0 0
0 2 2 0

Ax By D A
x x z

C C
f

Ax By D B
y y z

C C

        
       

   
  

       
       
    

  

    
    

2

o o

2 2

o o

2 C x x A Ax By D Cz

C C y y B Ax By D Cz

      
  

       

 

   

   

2 2

o o

2 2 2

o o

2 A C x ABy C Az Cx AD

C ABx B C y C Bz Cy BD

     
 
     
 

 

 

 
o o

o o

AD C Cx Azx
f M

BD C Cy Bzy

    
            

0  

where 
2 2

2 2

A C AB
M

AB B C

 
  

 
 

      
22 2 2 2 2 2 2 2det M A C B C AB C A B C        

 

2 2

1

2 22 2 2 2

1 B C AB
M

AB A CC A B C


  

  
    

 

 

 

 
o o1

o o

AD C Cx Azx
M

BD C Cy Bzy


    

          
 

 

       

       

2 2 2 2

2 2

o o o o

2 2

o o o o

1

C A B C

B C AD C Cx Az AB BD C Cy Bz

AB AD C Cx Az A C BD C Cy Bz

 
 

        
 
         
 
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 

  

  

2 2 2 2

o o o

2 2 2 2 2 2 2 2

o o o

1 C AD C B C x ABy ACz

C A B C C BD C A C y ABx BCz

     
 
       
 

 

   

   

2 2 2 2

o o o

2 2 2 2 2 2 2

o o o

1 A D By Cz A B C A x

A B C B D Ax Cz A B C B y

       
 

         
 

 

 

 
o o o o

2 2 2

o o o o

1x A Ax By Cz Dx

y B Ax By Cz Dy A B C

      
                

 

o o o o

2 2 2

o

xx AAx By Cz D

yy BA B C

      
      

     
 

and   
 Ax By D

z
C

  
  

 

 
 o o 2 2o o o

2 2 2

Ax By D Ax By Cz D
A B

C C A B C

     
  

 

 

 
 o o 2 2 2 2o o o

2 2 2

Ax By D Ax By Cz D
A B C C

C C A B C

     
    

 
 

   

 

2

o o o o oo o o

2 2 2

Ax By D C Ax By Cz DAx By Cz D

C C C A B C

       
  

 
 

 o o o

o 2 2 2

C Ax By Cz D
z

A B C

  
 

 
 

Therefore the only critical point is at 

 

o

o o o
o 2 2 2

o

x x A
Ax By Cz D

y y B
A B C

z z C

     
        

          
          

 

 

which is the nearest point on the plane 0Ax By Cz D     to the point 

 o o o, ,P x y z . 

 



  

 - 9 -  

In the event that C = 0, then express y in terms of x and substitute 

Ax D
y

B


   into  ,f x y in the analysis above, unless B and C are both 

zero, in which case substitute 
D

x
A

   into  ,f x y .   Alternatively, one can 

make an argument based on symmetry that this expression for the location 

of the critical point is valid even if any one or two of A, B, C are zero. 

 
As before, the minimum value of  f  is   

       
2 2 2

o o o, ,f x y z x x y y z z       

 
2

2 2 2o o o

2 2 2

Ax By Cz D
A B C

A B C

     
      

   
 

 
2

o o o2

min 2 2 2

Ax By Cz D
f d

A B C

  
  

 
 

 

o o o

2 2 2

Ax By Cz D
d

A B C

  


 
 

  

This method requires more effort than the method using Lagrange 

multipliers, while the vector approach is the fastest (and easiest to visualize) 

of these three methods. 

 

These general results are incorporated easily into a spreadsheet, which 

helps in the setting of sample exercises and examination problems.   From 

an Excel spreadsheet [1], the solution to the examination question at the top 

of this note is quickly found to be min 9 3f d   , with the nearest point 

at (1, 3, 1). 
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